教案可以帮助教师在教学中注重培养学生的关键技能和实践能力,以达到教学的重点要求,教案的编写过程可以促使我们深入思考教学内容和方法,提升我们的教学能力,九九公文网小编今天就为您带来了小学数学下册优秀教案5篇,相信一定会对你有所帮助。
小学数学下册优秀教案篇1
设计说明
根据本课时的复习内容和特点,依托教材提供的练习题,从以下两个层次进行复习。
1.引导学生按照指定的标准分类。
这一层次的复习,首先让学生按照颜色分类,采用小组讨论的方式,找出自己分类的数据,然后将数据填入统计表中,初步体会到整理数据的全过程。在按照颜色分类的基础上,让学生自主完成按照形状进行分类,以巩固整理数据的方法。
2.引导学生按照自选的标准进行分类。
这一层次的复习过程能让学生体验到分类结果的多样性。通过以上的复习设计,使学生会用简单的统计表、象形统计图来呈现整理的结果,并培养学生从多角度、多层次、多方位地看待事物的意识。
课前准备
教师准备ppt课件
学生准备不同形状的平面图形若干
教学过程
⊙导入新课
(课件出示不同形状的平面图形)
师:同学们,这些图形都是我们学过的`平面图形,谁能告诉大家它们的名称?
(教师指名汇报)
师:同学们的记忆力真好,今天我们就利用这些平面图形来复习有关分类与整理的知识。
设计意图:通过辨认平面图形,为复习课的展开奠定基础。
⊙复习梳理
1.复习按照指定的标准分类。
(课件出示教材94页3题)
师:这么多不同颜色、不同形状的卡片混在一起,你们能分别按照它们的颜色和形状把它们分一分吗?
(1)按照颜色分类。
师:请同学们小组合作解决,要知道每种颜色的卡片分别有多少张,应该怎么办呢?
(学生小组讨论)
汇报讨论结果。
方法一:先分一分,再数一数。
先按照红、绿、蓝、黄、粉五种颜色把卡片分成五类,然后数出每一类的张数。
方法二:边数边画。
学生展示画的结果:
方法三:用文字方式呈现分类的结果。
红色绿色蓝色黄色粉色
5张3张6张2张4张
师:请根据你们用不同方法分类整理的结果,把教材94页3题(1)中的表格填写完整。
(学生自主填写表格)
师:根据表格中的数据,请你提出数学问题,并自主解答。
(学生之间根据数据互相提出问题,并解答)
(2)按照形状分类。
师:根据按照颜色分类的方法,请同学们按照形状对这些卡片进行分类,并自主填写教材94页3题(2)中的表格。
(学生小组合作,按照形状分类,并填写表格)
师:请同学们观察这两个表格并动笔算一算,不管是按照颜色分类还是按照形状分类,卡片的什么是不变的?
(引导学生说出卡片的总数量是不变的)
设计意图:通过引导学生复习按照不同标准分类的方法,进一步体会到分类结果在单一标准下的一致性和在不同标准下的多样性,更好地体会分类思想。
小学数学下册优秀教案篇2
教学内容:
税率与折扣
教学目标:
1、理解税率、折扣的含义,知道它们在工农业生产和日常生活中的作用,会进行这方面的简单计算并能解决简单的实际问题。
2、在解决实际问题的过程中,进一步体会数学知识间的内在联系,增强思维的深刻性。
教学重点:
理解税率、折扣的含义。
教学难点:
解答税率、折扣的实际问题。
教具准备:
课件、相关资料。
教学过程:
一、创设情境,提出问题
谈话:同学们,还记得采摘节的情景吗?今天我们一起去彩虹谷看一看吧。
出示信息图,指名说出信息图中的数学信息。
理清信息后,教师直接提出问题:如果按3%的税率缴纳营业税,黄金周期间彩虹谷景区应缴纳营业税多少万元?
二、合作探究,解决问题
1、解决第一个红点问题
谈话:在老师提出的问题中,你有没有什么不懂的地方?
学生提出疑问,疑问大都会集中在有关纳率、税率、税额的相关知识上。
谈话:课前老师让同学们回去搜集有关纳税的一些知识,下面让我们来交流一下,你都知道了些什么?
全班交流,教师适时补充。
谈话:看来百分数在生活中的应用还真是不少呢,通过刚才同学们的交流,再结合信息图中的信息,你认为要求应上缴门票营业税多少万元,就是求什么?为什么?
让学生充分思考后,再指名回答。回答时不光要让学生说出要求应缴纳营业税多少万元,就是求什么,还要让学生说一说自己是怎样想的,重点明确求应缴纳营业税多少万元就是求营业额的3%是多少。
学生明确问题后,独立解答,全班交流。
1153%=3.45(万元)
答:应缴纳营业税3.45万元。
谈话:根据刚才同学们解决的这个问题,你能总结出求营业税问题的基本方法吗?
学生独立思考后,先在小组中讨论交流,然后全班交流,统一方法:税额=营业额税率。
2、小练习:自主练习第1题
第1题是求税额的基本练习题。练习时,在学生独立解答后,重点让学生说说有关税额的数量关系和自己是怎样计算的。
小学数学下册优秀教案篇3
设计说明
1.注重培养学生学习的自主性。
引导和培养学生的自主学习能力是切实可行的,对学生养成终身学习的习惯起着不可估量的重要作用。本设计通过让学生找玩具汽车数量与小人书数量之间存在的比例关系和列举比例等,调动学生的学习热情,使学生的学习兴趣和求知欲望得到激发,思维得到拓展。
2.培养学生的解题能力。
本设计以扶代讲,巧妙地引导学生主动探究,使学生在解决问题的过程中,不但能理解和掌握解比例的方法,而且能体会到数学与生活的密切联系,使学生的解题能力、合作能力及归纳能力得到提高。
课前准备
多媒体课件
教学过程
⊙创设情境,提出问题
1.介绍“物物交换”的背景知识。
人类使用货币的历史产生于最早出现物质交换的时代。在原始社会,人们使用“物物交换”的方式交换自己所需要的物资,如用一只羊换一把斧头。我们今天所学的数学知识就从“物物交换”开始。
2.呈现问题。
同学们算一算,14个玩具汽车可以换多少本小人书?
设计意图:通过“物物交换”,激发学生的兴趣,接着呈现“玩具汽车换小人书”这一情境并提出问题,激发学生学习的热情,为探究新知奠定基础。
⊙尝试解决,体会联系
1.想一想。
师:同学们算一算,14个玩具汽车可以换多少本小人书?把你的想法记录在本上。
2.说一说。
教师引导学生交流各自的想法,体会在“物物交换”的过程中,玩具汽车的数量与小人书的数量之间存在的关系。
预设
方法一 14÷4=3.5,3.5×10=35(本)。
方法二 10÷2=5,14÷2=7,5×7=35(本)。
方法三 4个玩具汽车=10本小人书,14÷4=3……2,2个玩具汽车=5本小人书,10×3+5=35(本)。
方法四 4个玩具汽车=10本小人书,8个玩具汽车=20本小人书,12个玩具汽车=30本小人书,2个玩具汽车=5本小人书,12+2=14(个),30+5=35(本)。
⊙自主学习,探究新知
1.提出新的要求。
师:假设14个玩具汽车可以换x本小人书,你能尝试用比例的知识解决问题吗?
2.学生尝试列式。
预设
方法一 4∶10=14∶x。
方法二 10∶4=x∶14。
方法三 14∶4=x∶10。
方法四 4∶14=10∶x。
3.交流汇报写出比例的主要依据。
4.学生独立解比例。
5.汇报结果。
预设
生1:根据在比例里,两个内项的积等于两个外项的积,可以把这个比例转化成4x=10×14。
生2:我是这样计算的:
4∶10=14∶x
解:4x=140
x=35
6.出示课堂活动卡,组织学生先和同伴交流,再独立解决。
(师巡视,适时指导)
7.验算:把求出的结果代入比例验算一下,看等式是否成立。
(学生自主验算)
8.教师小结。
解比例的关键是根据“内项的积等于外项的积”写成等式,再用等式的性质解方程。
设计意图:将解比例的学习融入到问题解决的过程中,引导学生自主独立解决,然后组织学生汇报自己的解法,这样学生对新知识就会更加理解。
小学数学下册优秀教案篇4
教学目标:
1.结合具体情境,认识比例尺;能根据图上距离、实际距离、比例尺中的两个量求第三个量。
2.运用比例尺的有关知识,通过测量、绘图、估算、计算等活动,学会解决生活中的一些问题。
3.进一步体会数学与日常生活的密切联系。
教学重点:目标1、2。
教学难点:目标2。
教学过程:
活动一、创设情境,引入新知
笑笑家新买了一套房子,爸爸拿回了新房子的平面图,现在让我们也一起看看吧。
1.出示平面图。
2.观察图,说说从图中知道了什么?
3.思考:比例尺1:100是什么意思?
(1)独立思考。
(2)同伴交流。
(3)汇报。
得出:比例尺表示图上距离与实际距离的比。1:100的含义是图上1厘米的线段表示实际100厘米。
4.量一量平面图中笑笑卧室的长是( )厘米,宽是( )厘米。笑笑卧室实际的长是( )米,宽是( )米,面积是( )平方米。直接提出“笑笑卧室实际的面积是多少平方米?
(1)学生四人小组合作完成。
(2)汇报交流。
强调:必须先求出实际的长和宽,然后再算出实际的面积。
5.笑笑家的总面积是多少平方米?
(1)学生独立完成。
(2)集体订正。
6.在父母卧室南墙正中有一扇宽为2米的窗户,在平面图标出来。
(1)理解题意。
(2)独立思考、交流方法,即要根据比例尺和实际距离先求出平面距离,然后再在图中标出。
(3)进行计算。
7.笑笑在本子上画自己卧室的平面图,她用8厘米表示自己卧室的长。
(1)图上1厘米表示的实际距离是多少厘米?
(2)她画的平面图的比例尺是多少?
活动二、试一试
1.小明家在北京,他和妈妈要到上海去旅游。算一算两地之间的实际距离大约是( )千米。
(1)理解题意,独立思考。
(2)交流自己的想法。
(3)进行计算。
活动三、练一练
1.完成32页第2题。
(1)独立完成。
(2)汇报交流。
(3)提出问题。
2.一张地图上,用3厘米表示实际距离600米,求这张地图的比例尺。
(1)独立计算。
(2)汇报,全班交流。
(3)说说自己的想法。
活动四、实践活动
1.找一张中国地图,量一量,算一算。
(1)量出北京和台北之间的距离是( )厘米,它们之间的实际距离大约是( )千米。
(2)量出乌鲁木齐和上海之间的距离是( )厘米,它们之间的实际距离是( )千米。
2.找一张中国地图,用▲表出你家乡的大致位置。
(1)估一估在地图上你的家乡与北京的距离大约是( )厘米,实际距离大约是( )千米。
(2)放暑假时,你打算从( )到( )去旅游,两地之间的实际距离大约是( )千米。
3.量一量你的卧室的长和宽,以及一些家具的长和宽,然后以1:100的比例尺画出你卧室的平面图。
学生可以在家长的帮助下,在家里完成。
课后小结:说说你今天的收获和问题。
小学数学下册优秀教案篇5
课前准备
教师准备 ppt课件
教学过程
⊙谈话揭题
1.谈话。
(1)我们学过哪些平面图形?你知道它们的周长、面积的计算公式吗?
预设
生1:我们学过三角形、长方形、正方形、平行四边形、梯形、圆和环形等平面图形。
生2:三角形的面积计算公式是“底×高÷2”。
……
(2)你们学过哪些立体图形?你们知道它们的表面积、体积的计算公式吗?
预设
生1:我们学过长方体、正方体、圆柱、圆锥。
生2:长方体的表面积……
2.揭题。
我们曾经学过的这些图形,一般称为基本图形或规则图形,这节课我们来复习组合图形、不规则图形的相关知识。
⊙回顾与整理
1.提问:如何求组合图形、不规则图形的周长或面积?
(一般通过“割补”“平移”“旋转”等方法,将它们转化成求基本图形周长或面积的和、差等)
2.提问:如何计算立体组合图形的表面积或体积?
(1)学生分组讨论。
(2)指名汇报。(学生自由回答,合理即可)
(3)教师小结。
在计算立体组合图形的表面积时,可以把每个面的面积进行累加,也可以借助视图来求表面积。
在计算立体组合图形的体积时,有的要把几个物体的体积相加来求体积,有的要从一个物体的体积里减去另一个物体的体积,这要根据具体情况而定。
无论是分割还是添补,都是把复杂的图形转化成简单的图形。
⊙典型例题解析
1.课件出示典型例题1。
(1)求阴影部分的面积。(单位:cm)
分析 本题考查学生求组合图形面积的能力。
因为阴影部分是不规则图形,所以可以采用阴影部分的面积=长方形的面积-大三角形的面积-小三角形的面积的方法来求面积。
解答 20×16-12×20÷2-8×16÷2=136(cm2)
(2)下面是两个完全相同的直角三角形,其中一部分重叠在一起,求阴影部分的面积。(单位:cm)
分析 从图中可以看出,阴影部分是一个梯形,但梯形的上、下底和高都不知道,所以无法直接求出它的面积。
观察图形可以看出:阴影部分的面积加上三角形efc的面积等于大三角形deg的面积,而梯形abef的面积加上三角形efc的面积等于大三角形abc的面积,且两个大三角形的面积相等,所以阴影部分的面积与梯形abef的面积相等,只要求出梯形abef的面积就可以求出阴影部分的面积。
解答 (8-3+8)×6÷2=39(cm2)
2.课件出示典型例题2。
将高都是1 m,底面半径分别是5 m、3 m和1 m的三个圆柱组成一个物体,求这个物体的表面积。
分析 本题考查的是求立体组合图形表面积的能力。
如图,这个物体由三个圆柱组成,仔细观察可以发现:向上的露在外面的三个面的面积之和(两个圆环和一个圆)正好等于大圆柱一个底面的面积(或者说相当于大圆柱上底面的面积)。
物体的表面积=大圆柱的表面积+中圆柱的侧面积+小圆柱的侧面积
解答 2×3.14×52+2×3.14×5×1+2×3.14×3×1+2×3.14×1×1
=157+31.4+18.84+6.28
=213.52(m2)
小学数学下册优秀教案5篇相关文章: