在实际教学中,教案的灵活调整能够帮助教师更好地应对课堂上的突发情况和变化,通过精心编写的教案,教师能够清晰地传达知识点,减少课堂上的混乱,下面是九九公文网小编为您分享的小学四年级下北师大版教案6篇,感谢您的参阅。
小学四年级下北师大版教案篇1
教学目标:
1。理解三角形高的概念。知道三角形有三条高。
2。学会画三角形的高。
3。了解直角三角形、钝角三角形三条高的画法及特征。
教学重点:理解三角形高的概念 。
教学难点:了解三角形三条高的画法。
教学资源:三角板、学生的学习单。
教学活动:
同学们好,这节课我们研究三角形的高。
一、 复习旧知,导入新课。
1。在前面的学习中,我们已经知道了三角形有三条边、三个顶点、三个角。(演示)。这节课我们继续研究三角形高的有关知识。
2。揭示课题(板书课题:三角形的高)
二、操作演示,观察发现。
1。(边演示边说)如果我们从三角形的一个顶点到它的对边作一条垂线,顶点和垂足之间的线段叫做三角形的高,这条对边叫做三角形的底。
2。老师在黑板上示范三角形高的画法:
3。你觉得三角形会有几条高呢?为什么?(三角形有三个顶点,从三角形的每一个顶点都能向它的对边作一条垂线,所以有三条高)请同学们画出这个三角形的三条高。一名同学上黑板上演示画高。
4。认真观察三角形的高,你有什么发现?(一个三角形可以画出三条高,三角形的底和高是相互依存的。锐角三角形的三条高在三角形内相交于一点。)
三、实践应用,拓展延伸。
1。我们再来看直角三角形,你会以bc边为底,画出这个三角形的高吗?。(学生在学习单上画)。你有什么发现?(老师边演示边说:以直角三角形一条直角边bc为底,作高时,要从a点向它的对边bc作一条垂线,发现高与另一条直角边ab重合;如果以直角边ab为底,作高时,要从c点向它的对边作垂线,发现高与另一直角边bc重合,也就是直角三角形两条直角边,如果一条是底,那么另一条直角边就是它的高。以斜边ac为底,作高时,要从顶点b向它的对边ac作垂直线,发现高在三角形内。直角三角形也有三条高,其中一条在三角形内,另外两条高与两直角边重合。)
2。我们再来看钝角三角形,从钝角三角形的b点向它的对边作高,高在三角形内;从a点向它的对边作高,需要把对边bc延长,高在三角形外;从c点向它的对边作高,需要把对边ab延长,高也在三角形外。钝角三角形也有三条高,其中一条高在三角形内,另外两条高在三角形外。
四、反思总结,自我建构。
这节课你有什么收获?(学生因答可以是两个方面)一是从高的画法说;二是从发现说。通过研究,我们发现任何三角形都有三条高,其中锐角三角形的三条高在三角形内,并且相交于一点;直角三角形其中一条在三角形内,另外两条高与两直角边重合;而钝角三角形其中一条高在三角形内,另外两条高在三角形外。
这节课我们就研究到这儿,同学们再见!
小学四年级下北师大版教案篇2
?教学目标】
1.通过具体的例子,结合实际操作,使学生理解小数乘法的意义。
2.结合小数乘法的意义,使学生能够计算简单的小数乘整数。
3.通过探究小数乘整数计算方法的一系列活动,培养学生的类推迁移、联想转化等解决问题的策略意识。
?教材分析】
小数乘法的意义是在学生已经学习过“元、角、分与小数”、“小数的意义”、“小数的加减法”和掌握了“整数乘法的意义”基础上进行教学的,它是在整数乘法意义的基础上的进一步扩展。
?学情分析】
我所抽班级学生有73人。这班孩子从一年级开始就使用北大(版)教材,学生的思维比较活跃。对于列出小数乘法算式以及得出结果,学生不会有任何困难,关键在于学生能否联想到整数乘法的意义,然后用自己的语言来表述出小数乘法的意义。所以针对这一点,我打算利用小数加法的复习题,引导学生观察,使学生运用类推、迁移的方法来理解小数乘法的意义。
?教学过程】
一.复习引入
1、小数的意义:0.2 0.05 (学生口答)
2、小数加法:0.6+0.6 0.8+0.8 0.2+0.2+0.2 0.4+0.4+0.4 0.1+0.1+0.1+0.1+0.1
(1)学生口算
(2)你发现了什么?(都是求相同加数的和)
(3)你有什么想法?(可以用乘法计算)
3、揭示新课:
(1)0.2+0.2+0.2,用乘法怎样表示?为什么这样列式,你是这样想的?0.2×3表示什么意思?
(2)0.6+0.6,用乘法可以怎样写?0.6×2表示什么意思?
(3)剩下的几道怎样用乘法表示?分别表示什么意思?
(4)这些乘法算式与我们前面学的乘法有什么不同?(是小数乘法)
4、归纳意义:
小数乘整数表示什么呢?
二.探究算法
1、请大家想办法算出0.2×3的积。
(1)学生独立思考并计算。
(2)同桌交流算法。
(3)全班交流:
a.连加法:0.2+0.2+0.2=0.6
b.联想、转化:0.2元=2角 2角×3=6角=0.6元
c.画图法:你是怎样画的?为什么要画3个0.2?
d.推算:因为2×3=6,所以0.2×3=0.6
e.还有不同的吗?(略)
2、小结:只要适合自己,就是的!
三.巩固拓展
1、填一填
0.8+0.8+0.8=( )×( )=( )
0.3+0.3+0.3+0.3+0.3=( )×( )=( )
0.1+0.1+0.1+0.1+0.1+...=( )×( )=( )(10个0.1)
1.2×2=( )+( )=( )
( )×( )=( )+( )+( )+( )+( )(可以怎样填?你发现了什么?)
2、算一算
2×0.4 0.3×0 3×1.1 9×0.8 0.6×4 5×0.2 0.7×1
3、文具店里的数学问题:
(1)买4块橡皮多少元?
(2)买3支铅笔多少元?
(3)买2把尺子多少元?
(4)任选一种文具,你还能提出一步计算的乘法问题吗?
四.阅读质疑
(1)阅读教材38~39,把书中内容补充完整。
(2)还有不懂的问题吗?
五.全课小结:你有哪些收获?
小学四年级下北师大版教案篇3
设计说明
日常生活中蕴涵许多有关小数的问题,已经对小数的相关知识有了一定的了解,本节课在此基础上学习小数点的移动引起小数大小变化的规律。借助课件创设学生自主探究的空间,培养学生的数学综合素质,通过教学让学生掌握小数点位置移动引起小数大小变化的规律。借助“小数点搬家”的情境解决相关的问题,拓展学生的思维,培养学生自主探究、合作交流、应用所学知识解决实际问题的能力。
1.注重生活情境的创设,在探索中获取新知。
通过“蚂蚁快餐厅”中价格变化的情境,先让学生讨论为什么要让小数点搬家,再接着讨论三次标价的变化及实际价格,最后让学生观察小数点向右移动小数大小变化的规律,让学生在理解的基础上讨论小数点向左移动小数大小变化的规律。
2.根据学生的认知结构,突破重难点。
引导学生观察、比较三次不同的标价,它们都有数字“1”,但小数点的位置不同,小数的大小就不同。然后借助元、角、分的关系,让学生了解小数点向右移动时小数的大小如何变化。在此基础上再推出小数点向左移动时小数的大小如何变化,并加以验证。
课前准备
教师准备:ppt课件
学生准备:数字卡片
教学过程
⊙创设情境,激趣导入
我们已经学习了有关小数的知识。小数中最重要的一个符号是什么?(板书:小数点)今天,我把这位客人请进了课堂,看看它会给我们带来什么?
(动画)在轻快的音乐中,草原上跳出三个数字并排列成:256。这时小数点跳出来了,自我介绍:“大家好!我是小数点。”接着小数点跳到5和6之间(25.6),再跳到2和5之间(2.56),小数点说:“同学们!今天我们一起学习小数点搬家。”(板书课题:小数点搬家)
师:哦,原来小数点要搬家了。看了课题你有什么想法吗?
设计意图:通过创设“小数点搬家”的情境,吸引学生的注意力,让学生从具体情境中初步体会小数点的重要性,激发学生的学习兴趣、好奇心和求知欲。
⊙探究新知,合作交流
(一)探索小数点向右移动引起小数大小变化的规律。
1.出示课件,提出疑问。
课件出示主题图:小数点怎样搬的家?小数点的不断搬家使蚂蚁快餐厅的价格发生了怎样的变化?
2.师生共同明确:小数点第一次向右移动了一位,第二次又向右移动了一位,快餐的价格在逐渐增加。
3.在学生回答的基础上明确:快餐的价格由0.01元到0.10元,再到1.00元。
4.请同学们认真观察,0.01、0.10、1.00的小数点的位置有什么变化?它们的大小又有什么变化?请同学们以小组为单位,讨论交流。
5.学生汇报,交流结果。
(1)小数点向右移动一位。
方法一:0.01元=1分,0.1元=1角=10分,10分是1分的10倍,0.1元是0.01元的10倍,所以小数点向右移动一位,就扩大到原数的10倍。
方法二:0.01是,0.1是,0.01是100份中的1份,0.1是10份中的1份。所以0.1是0.01的10倍。所以小数点向右移动一位,就扩大到原数的10倍。
方法三:0.1米看成1分米,0.01米看成1厘米,1分米是1厘米的10倍,0.1是0.01的10倍。所以小数点向右移动一位,就扩大到原数的10倍。
(2)小数点向右移动两位。
0.01元=1分 1.00元=1元
0.01的小数点向右移动两位就是1,1元是1分的100倍,所以0.01的小数点向右移动两位,小数就相当于乘100,得到的数是它的100倍。
6.提问:如果小数点向右移动三位、四位,又会发生怎样的变化呢?同桌之间说一说。
7.小结:小数点太神奇了,它只要向右一跳就扩大,向右跳一位,得到的数就扩大到原来的10倍;向右跳两位,得到的数就扩大到原来的100倍……
小学四年级下北师大版教案篇4
【教学内容】:
?植树问题》是新课程标准实验教材四年级下册的内容。
【设计理念】:
?新课标》指出“应使学生经历从实际问题中抽象出数量关系,并运用所学知识解决问题的过程。”“植树问题”通常是指沿着一定的路线,这条路线的总长度被分成若干间隔。由于路线不同,植树要求不同,路线被分成的间隔和植树之间的关系就不同。本节课主要通过让学生自主探究、分析、比较的方法,找“植树问题”的规律。
【学期与教材分析】:
教材将植树问题分为几层次:两端都栽、两端不栽、环形情况等,其目的在于通过解决问题渗透数学思想方法。不同的教师在处理植树问题的教学上各有差别,而俞正强老师,一个衣着朴素、老式的布鞋、光亮的脑门、憨厚的笑容,对“植树问题”有自己独特的教学和见解,他抛开课本给出解决植树这类型问题的方法,从练习题的引入出发,层层递进的引导学生思考、分析、具体问题具体分析,使学生在轻松、愉快的学习氛围中完成。
【教学目标】
1、通过动手操作、合作交流,理解一条线段上植树问题的规律。
2、学会应用植树问题的模型去解决实际问题的方法。
3、经历和体验“复杂问题简单化”的解题方法和策略。
【教学重难点】
引导学生在探索中发现规律,培养学生的归纳能力及概括能力,从而初步认识植树问题,会解决相关的实际问题。
为完成上述教学内容和目标要求, 俞老师从简单的习题着手,进一步联系到生活中的植树等实际问题,使学生有更多的机会从周围的事物中学习数学和理解数学,体会到数学就在身边,体验到数学的魅力。
一、练习引入,构建新知。
课前创设简单易懂的题目“20米,平均每5段一份,可以分几份?”学生很快列出算式20÷5=4(段),紧接着引出例题“20米路,每5米栽一棵树,可以栽几棵?”学生列出算式20÷5=4。
俞老师没有直接告诉学生答案,而是询问,为什么用除法?问题(1)中两道题有什么共同点?目的在于,让学生在练习中,突现知识的起点----平均分。而不同点又是什么?一是求点数,一个求线段。那么一共可以栽几棵树呢?学生通过观察知道了一共可以栽4+1=5(棵)树,整节课条理清晰,层次分明,浅显易懂,始终围绕重点内容进行展开教学。
二、注重实践,体验探究。
教学中,俞老师多次引导学生观察、假设、思考,让学生看到把一条线段平均分成4段,加上两个端点,一共有5个端点,也就是要在5棵树。使学生发现和理解,植树问题并非简单的除法就可以解决,植树问题种在的地方就是点,而非线段上,接着俞老师从生活实际出发,引导学生思考和观察,生活中哪些人把什么做在点子上?学生通过思考后纷纷答道:电线杆、垃圾桶、栽花、纽扣、排队等,从而发散了学生的思维,激起了学生的学习兴趣。在学生兴趣盎然的时候,俞老师提出问题“段数和点数有什么样的关系?”启发学生透过现象发现规律,也就是栽树的棵树要比段数(间隔数)多1。让学生经历这个过程并从中学习一些解决问题的方法和策略。
三、联系生活,拓展思维。
体验是构建的基础,俞老师通过有趣的游戏激发学生理解植树在实际生活中的利用。让一排学生当“点”每2米栽一棵树,可以栽几棵树?转变为如果路尽头有了一座房子,我们该怎么植树?如果路的头尾各有一个房子,又怎么植树?栽几棵?简单实在的实际问题,把本节课的知识点良好的应用到实际生活当中,使学生从旧知向隐含的新知迁移了,本节课也因此达到了升华。
总之,本节课,以学生的设计为出发点,通过线段这一简洁、直观的方法的观察、分析,引导学生积极认真的思考,进而透过现象发现不同情况下的棵树与段数之间的关系。本节课,俞老师没有课件,一支粉笔,一块黑板,真正是一节难得的常态课,值得我学习和借鉴。
小学四年级下北师大版教案篇5
教学目标:
1、结合具体情境,探索积的小数位数与乘数的小数位数的关系。
2、让学生在比较中学会观察,学会总结。
3、渗透科学的思维方法。
教学重点:探索积的小数位数与乘数的小数位数的关系。
教学难点:探索积的小数位数与乘数的小数位数的关系。
教学设计
一、创设问题情境:
1、出示一张测量表:这是小强学习测量以后,课外测量的几组数据。你能根据这些数据算出它们的面积吗?
街心广场 长30米宽20米
花 坛长3米宽2米
地板砖 长0.3米宽0.2米
(1)学生独立列式计算后,汇报。
(2)教师根据学生的汇报,板书出3个算式:
街心广场: 30×20=600(平方米)
花坛: 3×2=6(平方米)
地板砖: 0.3×0.2=?
二、探索积的小数位数与乘数的位数之间的关系。
1、讨论:街心广场和花坛面积之间有什么关系?它们的长与宽之间又有什么关系?
总结:长与宽都扩大到原来10倍,面积扩大——100倍;长与宽都缩小到原来10倍,它的面积就缩小到原来的100倍。缩小到原来的100倍也可以说是缩小到原数的1/100,小数点向左移动2位。
2、小组讨论:我们应用刚才发现的现象,来比较花坛和地板砖的面积之间有什么关系?
地板砖与屏幕相比,长和宽都缩小到原来的10倍,它的面积也就缩小到原来的100倍。所以它的积也会缩小到原来的100倍。结果是0.06平方米。
3、这种方法得出来的结果是否正确?你能用其它的方法验证吗?(可以引导学生从直观涂一涂的方法来验证刚材的结论是否正确。)
4、引导学生总结:在小数乘法中,我们可以先把它们看成是整数来算,然后再看乘数的末尾一共有几位小数,就在积的末尾数出几位小数点上小数点。
三、尝试练习,再探规律。
1、试一试:根据第一算式求下面2个算式的积。让学生说说怎样算的。
2、填一填:将上一题的计算结果填入表格中。然后观察积的小数位数与乘数的小数位数之间有什么关系。(小组讨论)
汇报交流:第一个小数的位数与第二个小数位数加起来等于积的小数位数。
根据上面的规律,完成练一练的第1题、第2题。
四、全课小结。
板书设计
积的小数位数与乘数的小数位数的关系
街心广场: 30×20=600(平方米)
花 坛: 3×2=6(平方米)
地 板 砖: 0.3×0.2=0.06(平方米)
小学四年级下北师大版教案篇6
教学目标:
1.引导学生经历探究积的小数位数与乘数的小数位数的关系的过程,并能运用这个规律确定积的小数位数。
2.让学生通过观察、猜测、验证等活动提高学生的自主探究的能力,渗透转化思想。
3.激发学生学习数学的兴趣,增强他们学好数学的信心。
教学重、难点:探究积的小数位数与乘数的小数位数的关系。
教学准备:ppt。
课时安排:第三课时。
教学过程:
一、复习旧知
1.单位转换:填一填
0.5米=( )分米 3平方分米=( )平方米
0.08平方米=( )平方分米
2.口算:
20×40= 4×6= 7×6= 8×9=
2×4= 0. 4×6= 7×0.06= 0.8×9=
[设计意图]在接下来的新知探究环节,我要让孩子自主探究出0.3×0.2的计算方法,其中就用到通过单位转化将小数转化为整数来计算;小数乘整数是学生第一课时学的内容,复习这一知识,为研究小数乘小数的计算方法奠定了基础。
二、探究新知
1.(出示广场图)同学们看,这是一张会宁县城的街心广场图,从图中你得到哪些数学信息了?
(板书) 广场 花坛 瓷砖
长: 30米 3米 0.3米
宽: 20米 2米 0.2米
2.他们的面积你会算吗?试一试。(学生独立完成)
3.交流:谁来说说你算到的结果是多少?(完成板书)
要算广场和花坛的面积,很简单,算得都不错。瓷砖的面积你算到多少呢?是怎样算的?
4.这样,同学们在小组内先交流一下,听听同伴的方法是不是有道理。
5.谁来向大家介绍一下你计算0.3×0.2的方法?你听明白了吗?
6.学生交流:0.3米=3分米,0.2米=2分米,2×3=6(平方分米),6平方分米=0.06平方米,0.2×0.3=0.06(平方米)
是啊,根据这样的方法,我们发现0.2×0.3=0.06,真了不起!
7.从老师摘录的数据中,你有没有发现这组数据比较特殊,他们的长之间有什么关系?宽呢?
8.引导学生观察广场和花坛的数据:30变成3,缩小到原来的十分之一,20变成2,也缩小到原来的十分之一,结果600变成6,就缩小到原来的一百分之一。联系这个规律,你能说说还可以怎样得出瓷砖的面积吗?
9.施工人员觉得用长0.3米宽0.2米的瓷砖太小了,想改成长0.5米宽0.3米的瓷砖,这样每块瓷砖的面积又是多少呢?(学生独立计算)
10.交流:你是怎样计算的?(板书算式、结果)
11.回过头再来看看我们课开始时口算的几道小数乘法题,
观察0.2×0.3=0.06,0.5×0.3=0.15等一些算式,老师发现一个问题,都是小数乘法,为什么有的结果是一位小数,有的结果却是两位小数呢?你有什么发现?把你的发现和同桌交流一下。
12.全班交流:原来积的小数位数与乘数中小数位数有关,到底有怎样的关系?
小学四年级下北师大版教案6篇相关文章: